
Micromega Corporation 1 Revised 2006-08-16

uM-FPU V2
Instruction Reference

Overview
The uM-FPU V2.0 coprocessor is connected to a microcontroller using either an SPI or I2C interface. The
microcontroller sends instructions and data to the uM-FPU, the uM-FPU executes the instructions, and the
microcontroller reads the results. The uM-FPU contains sixteen 32-bit registers, numbered 0 through 15, which are
used to store floating point or long integer values. Register 0 is modified by some of the uM-FPU instructions, and
should be regarded as a working register. Registers 1 through 15 are available for general use. Instructions are
executed in the order that they are sent to the uM-FPU. Arithmetic operations are defined in terms of register A and
register B. Register A and register B can be any of the sixteen registers and are selected prior to an operation using
the SELECTA and SELECTB instructions, or they are selected as part of the instruction itself. For example:

These two instructions add the floating point value of register 2 to register1.

Opcode Instruction Description
 01 SELECTA+1 select register 1 as A
 62 FADD+2 select register 2 as B, calculate A = A + B

These two instructions calculate the sine of the angle in register 3.

Opcode Instruction Description
 03 SELECTA+3 select register 3 as A
 E5 SIN calculate A = sin(A)

These three instructions calculate the value of register 7 raised to the power of register 8.

Opcode Instruction Description
 07 SELECTA+7 select register 7 as A
 08 SELECTB+8 select register 8 as B
 FE E0 POWER compute A = A to the power of B

The uM-FPU V2 processor has a 32 byte instruction buffer. Prior to issuing any instruction that reads data from the
uM-FPU, the Busy/Ready status must be checked to ensure that all of the instructions have been executed. If more
than 32 bytes are required to specify a sequence of operations, the Busy/Ready status must be checked at least every
32 bytes to ensure that the instruction buffer does not overflow. See the datasheet for details about the SPI or I2C
interface.

 uM-FPU Instructions

Micromega Corporation 2 uM-FPU Instruction Reference

Floating Point Instructions
SELECTA Select A
SELECTB Select B
FWRITEA Select A, and write 32-bit value to A
FWRITEB Select B, and write 32-bit value to B
FREAD Read the floating point value from register
READFLOAT Read floating point value of register A

FSET Select B, A = B
FADD Select B, A = A + B
FSUB Select B, A = A - B
FMUL Select B, A = A * B
FDIV Select B, A = A / B

SQRT A = sqrt(A)
LOG A = log(A)
LOG10 A = log10(A)
EXP A = exp(A)
EXP10 A = exp10(A)
FLOOR A = floor(A)
CEIL A = ceil(A)
ROUND A = round(A)
NEGATE A = -A
ABS A = |A|
INVERSE A = 1 / A
MIN A = minimum of A and B
MAX A = maximum of A and B
POWER A = A to the power of B
ROOT A = the Bth root of A

SIN A = sin(A)
COS A = cos(A)
TAN A = tan(A)
ASIN A = asin(A)
ACOS A = acos (A)
ATAN A = atan(A)
ATAN2 A = atan(A/B)
DEGREES Convert radians to degrees
RADIANS Convert degrees to radians

FLOAT register 0 = float(A)
FIX register 0 = fix(A)
FRACTION Load register 0 with the fractional portion of A
FSTATUS Get the status of A
FCOMPARE Compare A and B

LOADBYTE Load register 0 with 8-bit signed integer converted to floating point
LOADUBYTE Load register 0 with 8-bit unsigned integer converted to floating point
LOADWORD Load register 0 with 16-bit signed integer converted to floating point
LOADUWORD Load register 0 with 16-bit unsigned integer converted to floating point
LOADZERO Load register 0 with zero (long integer or floating point)
LOADONE Load register 0 with floating point value of 1.0
LOADE Load register 0 with floating point value of e (2.7182818)
LOADPI Load register 0 with floating point value of Pi (3.1415927)

 uM-FPU Instructions

Micromega Corporation 3 uM-FPU Instruction Reference

Long Integer Instructions
SELECTA Select A
SELECTB Select B
LWRITEA Select A, and write 32-bit value to A
LWRITEB Select B, and write 32-bit value to B
LREAD Read long integer value from register
READBYTE Read lower 8 bits of register A
READWORD Read lower 16 bits of register A
READLONG Read long integer value of register A

LSET Select B, A = B
LADD Select B, A = A + B
LSUB Select B, A = A – B
LMUL Select B, A = A * B
LDIV Select B, A = A / B, remainder in register 0
LUDIV Select B, A = A / B (unsigned), remainder in register 0

LNEGATE A = -A
LABS A = |A|

LINCA A = A + 1
LINCB B = B + 1
LDECA A = A - 1
LDECB B = B - 1
LAND A = A AND B
LOR A = A OR B
LXOR A = A XOR B
LNOT A = NOT A
LTST A = return status of A AND B
LSHIFT A = A shift by B bit positions

FIX register 0 = fix(A)
FLOAT register 0 = float(A)
LSTATUS Get the long integer status
LCOMPARE Compare A and B
LUCOMPARE Compare A and B (unsigned)

LONGBYTE Load register 0 with 8-bit signed integer converted to long integer
LONGUBYTE Load register 0 with 8-bit unsigned integer converted to long integer
LONGWORD Load register 0 with 16-bit signed integer converted to long integer
LONGUWORD Load register 0 with 16-bit unsigned integer converted to long integer
LOADZERO Load register 0 with zero (long integer or floating point)

Left and Right Parentheses
LEFT Save A register and select new temporary register as A register
RIGHT Return value in register 0 and restore previous A register

Conversion Instructions
ATOF Convert ASCII string to floating point value, store in register 0
ATOL Convert ASCII string to long integer value, store in register 0
FTOA Convert floating point value to ASCII string and store in string buffer
LTOA Convert long integer value to ASCII string and store in string buffer
VERSION Copy version string to the string buffer
READSTR Read zero terminated string from string buffer

 uM-FPU Instructions

Micromega Corporation 4 uM-FPU Instruction Reference

Stored Function Instructions
FUNCTION Execute user defined function
TABLE Load A register with 32-bit value from table using register B as index
POLY Calculate Nth order polynomial
IF_FSTATUSA Conditional Execution
IF_FSTATUSB
IF_FCOMPARE
IF_LSTATUSA
IF_LSTATUSB
IF_LCOMPARE
IF_LUCOMPARE
IF_LTST

Miscellaneous Instructions
SYNC Synchronization
IEEEMODE Select IEEE floating point format
PICMODE Select PIC floating point format
XOP Prefix for extended opcodes
NOP No operation

Debug Instructions
BREAK Debug breakpoint
TRACEOFF Turn debug trace off
TRACEON Turn debug trace on
TRACESTR Send debug string to trace buffer
CHECKSUM Calculate checksum and store in register 0

Further Information

Check the Micromega website at www.micromegacorp.com

Micromega Corporation 5 Revised 2006-08-16

uM-FPU Instruction Reference

ABS A = |A|
Opcode: EC

Description: Calculates the absolute value of the floating point value in register A, and stores the result in

register A.

Special case: • if A is NaN, then the result is NaN

ACOS A = acos(A)
Opcode: FE E6

Description: Calculates the arc cosine of an angle in the range 0.0 through pi. The initial value is contained in

register A, and the result is returned in register A.

Special case: • if A is NaN or its absolute value is greater than 1, then the result is NaN

ASIN A = asin(A)
Opcode: FE E5

Description: Calculates the arc sine of an angle in the range of –pi/2 through pi/2. The initial value is contained

in register A, and the result in returned in register A.

Special cases: • if A is NaN or its absolute value is greater than 1, then the result is NaN
 • if A is 0.0, then the result is a 0.0
 • if A is –0.0, then the result is –0.0

ATAN A = atan(A)
Opcode: FE E7

Description: Calculates the arc tangent of an angle in the range of –pi/2 through pi/2. The initial value is

contained in register A, and the result in returned in register A.

Special cases: • if A is NaN, then the result is NaN
 • if A is 0.0, then the result is a 0.0
 • if A is –0.0, then the result is –0.0

ATAN2 A = atan(A/B)
Opcode: FE E8

Description: Calculates the arc tangent of an angle in the range of –pi/2 through pi/2. The initial value is

determined by dividing the value in register A by the value in register B, and the result in returned
in register A. This instruction is used to convert rectangular coordinates (A, B) to polar
coordinates (r, theta). The value of theta is returned in register A.

Special cases: • if A or B is NaN, then the result is NaN
 • if A is 0.0 and B > 0, then the result is 0.0
 • if A > 0 and finite, and B is +inf, then the result is 0.0
 • if A is –0.0 and B > 0, then the result is –0.0
 • if A < 0 and finite, and B is +inf, then the result is –0.0

 Detailed Descriptions

Micromega Corporation 6 uM-FPU Instruction Reference

 • if A is 0.0 and B < 0, then the result is pi
 • if A > 0 and finite, and B is –inf, then the result is pi
 • if A is –0.0, and B < 0, then the result is –pi
 • if A < 0 and finite, and B is –inf, then the result is –pi
 • if A > 0, and B is 0.0 or –0.0, then the result is pi/2
 • if A is +inf, and B is finite, then the result is pi/2
 • if A < 0, and B is 0.0 or –0.0, then the result is –pi/2
 • if A is –inf, and B is finite, then the result is –pi/2
 • if A is +inf, and B is +inf, then the result is pi/4
 • if A is +inf, and B is –inf, then the result is 3*pi/4
 • if A is –inf, and B is +inf, then the result is –pi/4
 • if A is –inf, and B is –inf, then the result is –3*pi/4

ATOF Convert a zero terminated ASCII string to floating point
Opcode: F9 nn nn … 00 (where nn and 00 are the bytes of the string)

Description: Converts a zero terminated ASCII string to a 32-bit floating point number, stores the result in

register 0, and selects register 0 as register B. The string to convert is sent immediately following
the opcode. The string can be normal number format (e.g. 1.56, -0.5) or exponential format (e.g.
10E6). Conversion will stop at the first invalid character, but data will continue to be read until a
zero terminator is encountered.

Example:
F9 32 2E 35 34 00 (string 2.54) stores the value 2.54 in register 0
F9 31 46 33 00 (string 1E3) stores the value 1000.0 in register 0

ATOL Convert a zero terminated ASCII string to long integer
Opcode: FB nn nn … 00 (where nn and 00 are the bytes of the string)

Description: Converts a zero terminated ASCII string to a 32-bit long integer, stores the result in register 0, and

selects register 0 as register B. The string to convert is sent immediately following the opcode.
Conversion will stop at the first invalid character, but data will continue to be read until a zero
terminator is encountered.

Example:
FB 35 30 30 30 30 30 00 (string 500000) stores the value 500000 in register 0
FB 35 45 00 (string -5) stores the value -5 in register 0

BREAK Debug breakpoint
Opcode: FE FB

Description: Used in conjunction with the built-in debugger. If the debugger is enabled, a breakpoint occurs

and the debug monitor is entered. If debug mode is not selected, this instruction is ignored.

CEIL A = ceil(A)
Opcode: E9

Description: Calculates the floating point value equal to the nearest integer that is greater than or equal to the

floating point value in register A. The result is stored in register A.

Special cases: • if A is NaN, then the result is NaN
 • if A is +infinity or -infinity, then the result is +infinity or -infinity
 • if A is 0.0 or –0.0, then the result is 0.0 or –0.0
 • if A is less than zero but greater than –1.0, then the result is –0.0

 Detailed Descriptions

Micromega Corporation 7 uM-FPU Instruction Reference

CHECKSUM Calculate a checksum for uM-FPU code
Opcode: FE FA

Description: A checksum is calculated for the uM-FPU code and stored in register 0. This is used as a

diagnostic test for confirming the state of a uM-FPU chip.

COS A = cos(A)
Opcode: E6

Description: Calculates the cosine of the angle (in radians) in register A and stored the result in register A.

Special case: • if A is NaN or an infinity, then the result is NaN

DEGREES Convert radians to degrees
Opcode: EE

Description: The floating point value in register A is converted from radians to degrees and the result is stored

in register A.

Special case: • if A is NaN, then the result is NaN

EXP A = exp(A)
Opcode: E3

Description: Calculates the value of e (2.7182818) raised to the power of the floating point value in register A.

The result is stored in register A.

Special cases: • if A is NaN, then the result is NaN
 • if A is +infinity or greater than 88, then the result is +infinity
 • if A is –infinity or less than -88, then the result is 0.0

EXP10 A = exp10(A)
Opcode: E4

Description: Calculates the value of 10 raised to the power of the floating point value in register A. The result

is stored in A.

Special cases: • if Ais NaN, then the result is NaN
 • if A is +infinity or greater than 38, then the result is +infinity
 • if A is –infinity or less than -38, then the result is 0.0

FADD A = A + B
Opcode: 6x (where x specifies register B)

Description: The floating point value in register B is added to the floating point value in register A and the

result is stored in register A. The lower 4 bits of the opcode are used to select register B.

Special cases: • if either value is NaN, then the result is NaN
 • if one value is +infinity and the other is –infinity, then the result is NaN
 • if one value is +infinity and the other is not –infinity, then the result is +infinity

 Detailed Descriptions

Micromega Corporation 8 uM-FPU Instruction Reference

 • if one value is -infinity and the other is not +infinity, then the result is -infinity

FCOMPARE Compare A and B
Opcode: F3
Returns: nn (where nn is the status byte)

Description: Compares the floating point values in registers A and B. The status byte must be read immediately

following this instruction. The status byte is set as follows:

ZSN--1 - -

BIT 7 06 5 4 3 2 1

 Bit 2 Not-a-Number Set if either value is not a valid number
 Bit 1 Sign Set if A < B
 Bit 0 Zero Set if A = B
 If neither Bit 0 or Bit 1 is set, A > B

FDIV A = A / B
Opcode: 9x (where x specifies register B)

Description: The floating point value in register A is divided by the floating point value in register B and the

result is stored in register A. The lower 4 bits of the opcode are used to select register B.

Special cases: • if either value is NaN, then the result is NaN
 • if both values are zero or both values are infinity, then the result is NaN
 • if B is zero and A is not zero, then the result is infinity
 • if B is infinity, then the result is zero

FIX register 0 = fix(A)
Opcode: F2

Description: Converts the floating point value in register A to a long integer value and stores the result in

register 0.

Special cases: • if A is NaN, then the result is zero
 • if A is +infinity or greater than the maximum signed long integer, then the result is the maximum

signed long integer (decimal: 2147483647, hex: $7FFFFFFF)
 • if A is –infinity or less than the minimum signed long integer, then the result is the minimum

signed long integer (decimal: -2147483648, hex: $80000000)

FLOAT register 0 = float(A)
Opcode: F1

Description: Converts the long integer value in register A to a floating point value and stores the result in

register 0.

FLOOR A = floor(A)
Opcode: E8

Description: Calculates the floating point value equal to the nearest integer that is less than or equal to the

floating point value in register A. The result is stored in register A.

 Detailed Descriptions

Micromega Corporation 9 uM-FPU Instruction Reference

Special cases: • if A is NaN, then the result is NaN
 • if A is +infinity or -infinity, then the result is +infinity or -infinity
 • if A is 0.0 or –0.0, then the result is 0.0 or –0.0

FMUL A = A * B
Opcode: 8x (where x specifies register B)

Description: The floating point value in register A is multiplied by the floating point value in register B and the

result is stored in register A. The lower 4 bits of the opcode are used to select register B.

Special cases: • if either value is NaN, or one value is zero and the other is infinity, then the result is NaN
 • if either values is infinity and the other is nonzero, then the result is infinity

FRACTION Load register 0 with the fractional part of A
Opcode: FE E4

Description: Register 0 is loaded with the fractional part the floating point value in register A.

Special cases: • if A is NaN or infinity, then the result is NaN

FREAD Read floating point value from register
Opcode: 4x (where x specifies the register)
Returns: nn nn nn nn (where nn are data bytes, MSB first)

Description: Returns the floating point value of the register selected by the lower 4 bits of the opcode. The four

bytes of the 32-bit floating point value must be read immediately following this instruction. If the
PIC data format has been selected (using the PICMODE instruction), the IEEE 754 format
floating point value is converted to PIC format before being sent.

FSET A = B
Opcode: 5x (where x specifies register B)

Description: Sets the value of register A to the value of register B. The lower 4 bits of the opcode are used to

select register B.

FSTATUS Get the floating point status of A
Opcode: FD
Returns: nn (where nn is the status byte)

Description: Get the status of the floating point value in register A. The status byte must be read following this

instruction. The status byte is set as follows:

ZSNI-1 - -

BIT 7 06 5 4 3 2 1

 Bit 3 Infinity Set if the value is an infinity
 Bit 2 Not-a-Number Set if the value is not a valid number
 Bit 1 Sign Set if the value is negative
 Bit 0 Zero Set if the value is zero

 Detailed Descriptions

Micromega Corporation 10 uM-FPU Instruction Reference

FSUB A = A – B
Opcode: 7x (where x specifies register B)

Description: The floating point value in register B is subtracted from the floating point value in register A and

the result is stored in register A. The lower 4 bits of the opcode are used to select register B.

Special cases: • if either value is NaN, then the result is NaN
 • if both values are infinity and the same sign, then the result is NaN
 • if the A value is +infinity and the B value not +infinity, then the result is +infinity
 • if the A value is -infinity and the B value not -infinity, then the result is -infinity
 • if the A value is not an infinity and the B value is an infinity, then the result is an infinity of the

opposite sign as the B value

FTOA Convert floating point value to ASCII string and store in string buffer
Opcode: FA nn (where nn is the format byte)

Description: The floating point value in register A is converted to an ASCII string and stored in the string

buffer. The byte immediately following the opcode is the format byte and determines the format
of the converted value.

 If the format byte is zero, as many digits as necessary will be used to represent the number with up

to eight significant digits. Very large or very small numbers are represented in exponential
notation. The length of the displayed value is variable and can be from 3 to 12 characters in length.
The special cases of NaN (Not a Number), +infinity, -infinity, and -0.0 are handled. Examples of
the ASCII strings produced are as follows:

 1.0 NaN 0.0
 10e20 Infinity -0.0
 3.1415927 -Infinity 1.0
 -52.333334 -3.5e-5 0.01

 If the format byte is non-zero, it is interpreted as a decimal number. The tens digit specifies the

maximum length of the converted string, and the ones digit specifies the number of decimal
points. The maximum number of digits for the formatted conversion is 9, and the maximum
number of decimal points is 6. If the floating point value is too large for the format specified,
asterisks will be stored. If the number of decimal points is zero, no decimal point will be
displayed. Examples of the display format are as follows:

Value in register A Format byte Display format

123.567 61 (6.1) 123.6
123.567 62 (6.2) 123.57
123.567 42 (4.2) *.**
0.9999 20 (2.0) 1
0.9999 31 (3.1) 1.0

This instruction is normally followed by a READSTR instruction to read the string.

FUNC Execute user defined function
Opcode: FE 0x (where x specifies the lower 4 bits of function numbers 0 to 15)
 FE 1x (where x specifies the lower 4 bits of function numbers 16 to 31)
 FE 2x (where x specifies the lower 4 bits of function numbers 32 to 47)
 FE 3x (where x specifies the lower 4 bits of function numbers 48 to 63)

Description: The specified user function is executed from uM-FPU flash memory. The lower 6 bits of the

 Detailed Descriptions

Micromega Corporation 11 uM-FPU Instruction Reference

opcode are used to select the user function. If the selected user function has not been defined,
register 0 will be set to NaN and the instruction will terminate. User functions are programmed by
the user using the debug monitor (see the uM-FPU datasheet). Functions are defined as a pre-
defined series of uM-FPU instructions, and can modify any register. Register B is set to register 0
after all user functions.

FWRITEA Select A, and write floating point value to A
Opcode: 2x nn nn nn nn (where x specifies register A,
 and nn are the data bytes, MSB first)

Description: A floating point value is stored in register A. The lower 4 bits of the opcode are used to select

register A, and the four bytes immediately following the opcode contain the 32-bit floating point
value. If the PIC data format has been selected (using the PICMODE instruction), the PIC format
floating point value is converted to IEEE 754 format before being stored in register A.

FWRITEB Select B, and write floating point value to B
Opcode: 3x nn nn nn nn (where x specifies register A,
 and nn are the data bytes, MSB first)

Description: A floating point value is stored in register B. The lower 4 bits of the opcode are used to select

register B, and the four bytes immediately following the opcode specify the 32-bit floating point
value. If the PIC data format has been selected (using the PICMODE instruction), the PIC format
floating point value is converted to IEEE 754 format before being stored in register B.

IEEEMODE Select IEEE floating point format
Opcode: FE F8

Description: Selects the IEEE 754 floating point format for the FREAD, FWRITEA, FWRITEB, and

READFLOAT instructions. This is the default mode on reset and only needs to be changed if the
PICMODE instruction has been used.

IF_FCOMPARE Conditional memory function, floating point compare of A and B
Opcode: FE 82 tt cc nn … nn (where tt is the test conditions, cc is size of code block,

 and nn are the bytes of the conditional code block)

Description: This opcode is only valid within a user function stored in the uM-FPU flash memory. If the result

of a floating point compare of the values in register A and B matches the test conditions, the block
of code that follows is executed, otherwise the block of code is skipped.

IF_FSTATUSA Conditional memory function, floating point status of A
Opcode: FE 80 tt cc nn … nn (where tt is the test conditions, cc is size of code block,

 and nn are the bytes of the conditional code block)

Description: This opcode is only valid within a user function stored in the uM-FPU flash memory. If the

floating point status of register A matches the test conditions, the block of code that follows is
executed, otherwise the block of code is skipped.

 Detailed Descriptions

Micromega Corporation 12 uM-FPU Instruction Reference

IF_FSTATUSB Conditional memory function, floating point status of B
Opcode: FE 81 tt cc nn … nn (where tt is the test conditions, cc is size of code block,

 and nn are the bytes of the conditional code block)

Description: This opcode is only valid within a user function stored in the uM-FPU flash memory. If the

floating point status of register B matches the test conditions, the block of code that follows is
executed, otherwise the block of code is skipped.

IF_LCOMPARE Conditional memory function, signed long compare of A and B
Opcode: FE 85 tt cc nn … nn (where tt is the test conditions, cc is size of code block,

 and nn are the bytes of the conditional code block)

Description: This opcode is only valid within a user function stored in the uM-FPU flash memory. If the result

of a signed long integer compare of the values in register A and B matches the test conditions, the
block of code that follows is executed, otherwise the block of code is skipped.

IF_LSTATUSA Conditional memory function, long integer status of A
Opcode: FE 83 tt cc nn … nn (where tt is the test conditions, cc is size of code block,

 and nn are the bytes of the conditional code block)

Description: This opcode is only valid within a user function stored in the uM-FPU flash memory. If the long

integer status of register A matches the test conditions, the block of code that follows is executed,
otherwise the block of code is skipped.

IF_ LSTATUSB Conditional memory function, long integer status of B
Opcode: FE 84 tt cc nn … nn (where tt is the test conditions, cc is size of code block,

 and nn are the bytes of the conditional code block)

Description: This opcode is only valid within a user function stored in the uM-FPU flash memory. If the long

integer status of register B matches the test conditions, the block of code that follows is executed,
otherwise the block of code is skipped.

IF_LTST Conditional memory function, bitwise AND of A and B
Opcode: FE 87 tt cc nn … nn (where tt is the test conditions, cc is size of code block,

 and nn are the bytes of the conditional code block)

Description: This opcode is only valid within a user function stored in the uM-FPU flash memory. If the

bitwise AND of the value in register A and the value in register B matches the test conditions, the
block of code that follows is executed, otherwise the block of code is skipped.

IF_LUCOMPARE Conditional memory function, unsigned long compare of A and B
Opcode: FE 86 tt cc nn … nn (where tt is the test conditions, cc is size of code block,

 and nn are the bytes of the conditional code block)

Description: This opcode is only valid within a user function stored in the uM-FPU flash memory. If the result

of an unsigned long integer compare of the values in register A and B matches the test conditions,
the block of code that follows is executed, otherwise the block of code is skipped.

 Detailed Descriptions

Micromega Corporation 13 uM-FPU Instruction Reference

INVERSE A = 1 / A.
Opcode: ED

Description: The inverse of the floating point value in register A is stored in register A.

Special cases: • if A is NaN, then the result is NaN
 • if A is zero, then the result is infinity
 • if A is infinity, then the result is zero

LABS A = |A|
Opcode: FE ED

Description: The absolute value of the long integer value in register A is stored in register A.

LADD A = A + B
Opcode: Ax (where x specifies register B)

Description: The long integer value in register B is added to the long integer value in register A and the result is

stored in register A. The lower 4 bits of the opcode are used to select register B.

LAND A = A AND B

Opcode: FE 98

Description: The bitwise AND of the values in register A and B is calculated and stored in register A.

LCOMPARE Compare A and B
Opcode: FE E9
Returns: nn (where nn is the status byte)

Description: Compares the signed long integer values in registers A and B. The status byte must be read

immediately following this instruction. The status byte is set as follows:

ZS---1 - -

BIT 7 06 5 4 3 2 1

 Bit 1 Sign Set if A < B
 Bit 0 Zero Set if A = B
 If neither Bit 0 or Bit 1 is set, A > B

LDECA A = A - 1

Opcode: FE 96

Description: The long integer value in register A is decremented by one.

LDECB B = B - 1
Opcode: FE 97

Description: The long integer value in register B is decremented by one.

 Detailed Descriptions

Micromega Corporation 14 uM-FPU Instruction Reference

LDIV A = A / B
Opcode: Dx (where x specifies register B)

Description: The long integer value in register A is divided by the long integer value in register B and the result

is stored in register A. The remainder of the division is stored in register 0. The lower 4 bits of the
opcode are used to select register B.

Special cases: • if B is zero, the result is the largest positive long integer ($3FFFFFFF)

LEFT Left Parenthesis
Opcode: FE EE
Returns: none

Description: The left parenthesis command saves the current register A selection, allocates the next temporary

register, and selects the new temporary register as register A. Used together with the right
parenthesis command to allocate temporary registers, and to change the order of a calculation.
There are five temporary registers, so parentheses can be nested up to five levels.

Special cases: • the maximum number of temporary registers is five. If the maximum number is exceeded, the

value of register A is set to NaN ($7FC00000).

LINCA A = A + 1
Opcode: FE 94

Description: The long integer value in register A is incremented by one.

LINCB B = B + 1
Opcode: FE 95

Description: The long integer value in register B is incremented by one.

LMUL A = A * B
Opcode: Cx (where x specifies register B)

Description: The long integer value in register A is multiplied by the long integer value in register B and the

result is stored in register A. The lower 4 bits of the opcode are used to select register B.

LNEGATE A = -A
Opcode: FE EC

Description: The negative of the long integer value in register A is stored in register A.

LNOT A = NOT A
Opcode: FE 9B

Description: The bitwise complement of the value in register A is stored in register A.

 Detailed Descriptions

Micromega Corporation 15 uM-FPU Instruction Reference

LOADBYTE Load register 0 with 8-bit signed integer converted to floating point
Opcode: F4 nn (where nn is the data byte)

Description: Loads register 0 with the 8-bit signed integer value following the opcode, converts it to a floating

point value, and selects register 0 as register B.

LOADE Load register 0 with floating point value of e (2.7182818)
Opcode: FE F2

Description: Loads register 0 with the floating point value of e (2.7182818), and selects register 0 as register B.

LOADONE Load register 0 with One.
Opcode: FE F1

Description: Loads register 0 with the floating point value 1.0, and selects register 0 as register B.

LOADPI Load register 0 with value of Pi.
Opcode: FE F3

Description: Loads register 0 with the floating point value of pi (3.1415927), and selects register 0 as register

B.

LOADUBYTE Load register 0 with 8-bit unsigned integer converted to floating point
Opcode: F5 nn (where nn is the data byte)

Description: Loads register 0 with the 8-bit unsigned integer value following the opcode, converts it to a

floating point value, and selects register 0 as register B.

LOADUWORD Load register 0 with 16-bit unsigned integer converted to floating point
Opcode: F7 nn nn (where nn are the data bytes, MSB first)

Description: Loads register 0 with the 16-bit unsigned integer value following the opcode, converts it to a

floating point value, and selects register 0 as register B.

LOADWORD Load register 0 with 16-bit signed integer converted to floating point
Opcode: F6 nn nn (where nn are the data bytes, MSB first)

Description: Loads register 0 with the 16-bit signed integer value following the opcode, converts it to a floating

point value, and selects register 0 as register B.

LOADZERO Load register 0 with Zero.
Opcode: FE F0

Description: Loads register 0 with a value of zero, and selects register 0 as register B. Used to load a floating

point zero or a long integer zero.

 Detailed Descriptions

Micromega Corporation 16 uM-FPU Instruction Reference

LOG A = log(A)
Opcode: E1

Description: Calculates the natural log of the floating point value in register A. The result is stored in register

A. The number e (2.7182818) is the base of the natural system of logarithms.

Special cases: • if the value is NaN or less than zero, then the result is NaN
 • if the value is +infinity, then the result is +infinity
 • if the value is 0.0 or –0.0, then the result is -infinity

LOG10 A = log10(A)
Opcode: E2

Description: Calculates the base 10 logarithm of the floating point value in register A. The result is stored in

register A.

Special cases: • if the value is NaN or less than zero, then the result is NaN
 • if the value is +infinity, then the result is +infinity
 • if the value is 0.0 or –0.0, then the result is -infinity

LONGBYTE Load register 0 with 8-bit signed integer converted to long integer
Opcode: FE F4 nn (where nn is the data byte)

Description: Loads register 0 with the 8-bit signed integer value following the opcode, converts it to a long

integer value, and selects register 0 as register B.

LONGUBYTE Load register 0 with 8-bit unsigned integer converted to long integer.
Opcode: FE F5 nn (where nn is the data byte)

Description: Loads register 0 with the 8-bit unsigned integer value following the opcode, converts it to a long

integer value, and selects register 0 as register B.

LONGUWORD Load register 0 with 16-bit unsigned integer converted to long integer.
Opcode: FE F7 nn nn (where nn are the data bytes, MSB first)

Description: Loads register 0 with the 16-bit unsigned integer value following the opcode, converts it to a long

integer value, and selects register 0 as register B.

LONGWORD Load register 0 with 16-bit signed integer converted to long integer
Opcode: FE F6 nn nn (where nn are the data bytes, MSB first)

Description: Loads register 0 with the 16-bit signed integer value following the opcode, converts it to a long

integer value, and selects register 0 as register B.

LOR A = A OR B
Opcode: FE 99

Description: The bitwise OR of the values in register A and B is calculated and stored in register A.

 Detailed Descriptions

Micromega Corporation 17 uM-FPU Instruction Reference

LREAD Get the long integer value of a register.
Opcode: FE Cx (where x specifies the register)
Returns: nn nn nn nn (where nn are the data bytes, MSB first)

Description: Returns the long integer value from the register selected by the lower 4 bits of the opcode. The

four bytes of the 32-bit long integer value must be read immediately following this instruction.

LSET A = B
Opcode: 5x (where x specifies register B)

Description: Sets the value of register A to the value of register B. The lower 4 bits of the opcode are used to

select register B.

LSHIFT A = A shifted by B bit positions
Opcode: FE 9D

Description: The value in register A is shifted by the number of bit positions specified by the long integer value

in register B. Register A is shifted left if the value in B is positive and right if the value is
negative.

Special cases: • if B = 0, no shift occurs
 • if B > 32 or B < –32, the result is zero

LSTATUS Get the long integer status of A
Opcode: FE EB
Returns: nn (where nn is the status byte)

Description: Get the status of the long integer value in register A. The status byte must be read immediately

following this instruction. The status byte is set as follows:

ZS---1 - -

BIT 7 06 5 4 3 2 1

 Bit 1 Sign Set if the value is negative
 Bit 0 Zero Set if the value is zero

LSUB A = A – B
Opcode: Bx (where x specifies register B)

Description: The long integer value in register B is subtracted from the long integer value in register A and the

result is stored in register A. The lower 4 bits of the opcode are used to select register B.

LTOA Convert long integer value to ASCII string and store in string buffer
Opcode: FC nn (where nn is the format byte)

Description: The long integer value in register A is converted to an ASCII string and stored in the string buffer.

The byte immediately following the opcode is the format byte and determines the format of the
converted value.

 If the format byte is zero, the length of the converted string is variable and can range from 1 to 11

characters in length. Examples of the converted string are as follows:

 Detailed Descriptions

Micromega Corporation 18 uM-FPU Instruction Reference

1
500000
-3598390

 If the format byte is non-zero, it is interpreted as a decimal number. A value between 0 and 15
specifies the length of the converted string. The converted string is right justified. If 100 is added
to the format value the value is converted as an unsigned long integer, otherwise it is converted as
an signed long integer. If the value is larger than the specified width, asterisks are stored. If the
length is specified as zero, the string will be as long as necessary to represent the number.
Examples of the converted string are as follows:

Value in register A Format byte Display format
-1 10 (signed 10) -1
-1 110 (unsigned 10) 4294967295
-1 4 (signed 4) -1
-1 104 (unsigned 4) ****
0 4 (signed 4) 0
0 0 (unformatted) 0
1000 6 (signed 6) 1000

The maximum length of the string is 15. This instruction is normally followed by a READSTR instruction to read

the string.

LTST Return the status of A AND B
Opcode: FE 9C

Description: Returns a status byte based on the result of a bitwise AND of the values in registers A and B. (The

values of the A and B registers are not changed.) The status byte must be read immediately
following this instruction. The status byte is set as follows:

 Bit 1 Sign Set if the value is negative
 Bit 0 Zero Set if the value is zero

LUCOMPARE Compare A and B (unsigned)
Opcode: FE EA
Returns: nn (where nn is the status byte)

Description: Compares the unsigned long integer values in registers A and B. The status byte must be read

immediately following this instruction. The status byte is set as follows:

ZS---1 - -

BIT 7 06 5 4 3 2 1

 Bit 1 Sign Set if A < B
 Bit 0 Zero Set if A = B
 If neither Bit 0 or Bit 1 is set, A > B

LUDIV A = A / B (unsigned)
Opcode: FE Dx (where x specifies register B)

Description: The unsigned long integer value in register A is divided by the unsigned long integer value in

register B and the result is stored in register A. The remainder of the division is stored in register
0. The lower 4 bits of the opcode are used to select register B.

 Detailed Descriptions

Micromega Corporation 19 uM-FPU Instruction Reference

Special cases: • if B is zero, the result is the largest positive long integer ($3FFFFFFF)

LWRITEA Load register A with long integer value
Opcode: FE Ax nn nn nn nn (where x specifies register A,
 and nn are the data bytes, MSB first)

Description: A long integer value is stored in register A. The lower 4 bits of the opcode are used to select

register A, and the four bytes immediately following the opcode contain the 32-bit long integer
value.

LWRITEB Load register B with long integer value
Opcode: FE Bx nn nn nn nn (where x specifies register A,
 and nn are the data bytes, MSB first)

Description: A long integer value is stored in register B. The lower 4 bits of the opcode are used to select

register B, and the four bytes immediately following the opcode contain the 32-bit long integer
value.

LXOR A = A XOR B
Opcode: FE 9A

Description: The bitwise XOR of the values in register A and B is calculated and stored in register A.

MAX A = maximum of A and B

Opcode: FE E3

Description: The maximum floating point value of registers A and B is stored in register A.

Special cases: • if either value is NaN, then the result is NaN

MIN A = minimum of A and B
Opcode: FE E2

Description: The minimum floating point value of registers A and B is stored in register A.

Special cases: • if either value is NaN, then the result is NaN

NEGATE A = -A
Opcode: EB

Description: The negative of the floating point value in register A is stored in register A.

Special case: • if the value is NaN, then the result is NaN

NOP No operation
Opcode: FF

Description: No operation.

 Detailed Descriptions

Micromega Corporation 20 uM-FPU Instruction Reference

PICMODE Select PIC floating point format
Opcode: FE 89 nn nn … nn (where nn are the bytes of the conditional code blocks)

Description: Selects the alternate PIC floating point mode using by many PIC compilers. All internal data on

the uM-FPU is stored in IEEE 754 format, but when the uM-FPU is in PIC mode an automatic
conversion is done by the FREAD, FWRITEA, FWRITEB, and READFLOAT instructions so
the PIC program can use floating point data in the alternate format. Normally this instruction
would be issued immediately after the reset as part of the initialization code. The IEEEMODE
instruction can be used to revert to standard IEEE 754 floating point mode..

POLY A = nth order polynomial
Opcode: FE 89 nn yy yy zz zz … (where nn is the order of the polynomial,

 followed by the yyyyzzzz coefficient of each term)

Description: This opcode is only valid within a user function stored in the uM-FPU flash memory. The value of

the specified polynomial is calculated and stored in register A. The general form of the
polynomial is:

 y = A0 + A1x1 + A2x2 + … Anxn

 The value of n is the order of the polynomial and is stored in the first byte following the opcode.

The value of x is the initial value of register A. The coefficient values A0, A1, A2, … An are
stored as a series of four byte floating point values in order from N to 0. If a given term in the
polynomial is not needed, a zero is stored for that value.

Example: The polynomial 3x + 5 would be represented as follows:

FE 89 01 40 A0 00 00 40 40 00 00

Where: FE 89 opcode
 01 order of the polynomial
 40 40 00 00 floating point constant 3.0
 40 A0 00 00 floating point constant 5.0

POWER A = A raised to the power of B
Opcode: FE E0

Description: The floating point value in register A is raised to the power of the floating point value in register B

and stored in register A.

Special cases: • if B is 0.0 or –0.0, then the result is 1.0
 • if B is 1.0, then the result is the same as the A value
 • if B is NaN, then the result is Nan
 • if A is NaN and B is nonzero, then the result is NaN
 • if |A| > 1 and B is +infinite, then the result is +infinity
 • if |A| < 1 and B is -infinite, then the result is +infinity
 • if |A| > 1 and B is -infinite, then the result is 0.0
 • if |A| < 1 and B is +infinite, then the result is 0.0
 • if |A| = 1 and B is infinite, then the result is NaN
 • if A is 0.0 and B > 0, then the result is 0.0
 • if A is +infinity and B < 0, then the result is 0.0
 • if A is 0.0 and B < 0, then the result is +infinity

 Detailed Descriptions

Micromega Corporation 21 uM-FPU Instruction Reference

 • if A is +infinity and B > 0, then the result is +infinity
 • if A is -0.0 and B > 0 but not a finite odd integer, then the result is 0.0
 • if the A is -infinity and B < 0 but not a finite odd integer, then the result is 0.0
 • if A is -0.0 and the B is a positive finite odd integer, then the result is –0.0
 • if A is -infinity and B is a negative finite odd integer, then the result is –0.0
 • if A is -0.0 and B < 0 but not a finite odd integer, then the result is +infinity
 • if A is -infinity and B > 0 but not a finite odd integer, then the result is +infinity
 • if A is -0.0 and B is a negative finite odd integer, then the result is –infinity
 • if A is -infinity and B is a positive finite odd integer, then the result is –infinity
 • if A < 0 and B is a finite even integer,
 then the result is equal to |A| to the power of B
 • if A < 0 and B is a finite odd integer,
 then the result is equal to the negative of |A| to the power of B
 • if A < 0 and finite and B is finite and not an integer, then the result is NaN

RADIANS Convert degrees to radians
Opcode: EF

Description: The floating point value in register A is converted from degrees to radians and the result is stored

in register A.

Special case: • if the value is NaN, then the result is NaN

READBYTE Read the lower 8-bits of register A
Opcode: FE 90
Returns: nn (where nn is the data byte)

Description: Returns the lower 8 bits of register A. The byte containing the 8-bit long integer value must be

read immediately following the instruction.

READFLOAT Read the floating point value of register A
Opcode: FE 93
Returns: nn nn nn nn (where nn are the data bytes, MSB first)

Description: Returns the floating point value of register A. The four bytes of the 32-bit floating point value

must be read immediately following this instruction. If the PIC data format has been selected
(using the PICMODE instruction), the IEEE 754 format floating point value is converted to PIC
format before being sent.

READLONG Read the long integer value of register A
Opcode: FE 92
Returns: nn nn nn nn (where nn are the data bytes, MSB first)

Description: Returns the 32-bit long integer value of register A. The four bytes of the 32-bit long integer value

must be read immediately following this instruction.

READSTR Reads a zero terminated string from the string buffer
Opcode: F8
Returns: nn nn … 00 (where nn and 00 are the bytes of the string)

 Detailed Descriptions

Micromega Corporation 22 uM-FPU Instruction Reference

Description: Returns the zero terminated string in the string buffer. Data bytes must be read immediately
following this instruction and continue until a zero byte is read. This instruction is typically used
after an FTOA, LTOA or VERSION instruction.

READWORD Read the lower 16-bits of register A
Opcode: FE 91
Returns: nn nn (where nn are the data bytes, MSB first)

Description: Returns the lower 16 bits of register A. The two bytes containing the 16-bit long integer value

must be read immediately following this instruction.

RIGHT Right Parenthesis
Opcode: FE EF

Description: The right parenthesis command copies the value of register A (the current temporary register) to

register 0, and selects register 0 as register B. If the right parenthesis is the outermost parenthesis,
the register A selection from before the first left parenthesis is restored, otherwise the previous
temporary register is selected as register. Used together with the left parenthesis command to
allocate temporary registers, and to change the order of a calculation. There are five temporary
registers, so parentheses can be nested up to five levels.

Special case: • if no left parenthesis is currently outstanding, then the value of register 0 is set to NaN.

($7FC00000).

ROOT A = the Bth root of A
Opcode: FE E1

Description: Calculates the nth root of the floating point value in register A and stores the result in register A.

Where the value n is equal to the floating point value in register B. It is equivalent to raising A to
the power of (1/B).

Special cases: • see the description of the POWER instruction for the special cases of (1/B)
 • if B is infinity, then (1/B) is zero
 • if B is zero, then (1/B) is infinity

ROUND A = round(A)
Opcode: EA

Description: The floating point value equal to the nearest integer to the floating point value in register A is

stored in register A.

Special cases: • if the value is NaN, then the result is NaN
 • if the value is +infinity or -infinity, then the result is +infinity or -infinity
 • if the value is 0.0 or –0.0, then the result is 0.0 or –0.0

SELECTA Select A
Opcode: 0x (where x specifies register A)

Description: The lower 4 bits of the opcode are used to select register A.

 Detailed Descriptions

Micromega Corporation 23 uM-FPU Instruction Reference

SELECTB Select B
Opcode: 1x (where x specifies register B)

Description: The lower 4 bits of the opcode are used to select register B.

SIN A = sin(A)
Opcode: E5

Description: Calculates the sine of the angle (in radians) in register A and stored the result in register A.

Special cases: • if A is NaN or an infinity, then the result is NaN
 • if A is 0.0, then the result is 0.0
 • if A is –0.0, then the result is –0.0

SQRT A = sqrt(A)
Opcode: E0

Description: Calculates the square root of the floating point value in register A and stored the result in register

A.

Special cases: • if the value is NaN or less than zero, then the result is NaN
 • if the value is +infinity, then the result is +infinity
 • if the value is 0.0 or –0.0, then the result is 0.0 or –0.0

SYNC Synchronization
Opcode: F0
Returns: 5C

Description: A sync character (0x5C) is sent in reply. This instruction is typically used after a reset to verify

communications.

TABLE A = value from table indexed by B
Opcode: FE 88 nn yy yy zz zz … (where nn is the size of the table,
 followed by the yyyzzzz table values)

Description: This opcode is only valid within a user function stored in the uM-FPU flash memory. The value of

the item in the table, indexed by register B, is stored in register A. The first byte after the opcode
specifies the size of the table, followed by groups of four bytes representing the 32-bit values for
each item in the table. This instruction can be used to load either floating point values or long
integer values. The long integer value in register B is used as an index into the table, with the first
table entry having index 0.

Special cases: • if B <= 0, then the result is item 0
 • if B > maximum size of table, then the result is the last item in the table

TAN A = tan(A)
Opcode: E7

Description: Calculates the tangent of the angle (in radians) in register A and stored the result in register A.

 Detailed Descriptions

Micromega Corporation 24 uM-FPU Instruction Reference

Special cases: • if A is NaN or an infinity, then the result is NaN
 • if A is 0.0, then the result is 0.0
 • if A is –0.0, then the result is –0.0

TRACEOFF Turn debug trace off
Opcode: FE FC

Description: Used with the built-in debugger. If the debugger is not enabled, this instruction is ignored. If the

debugger is enabled, debug tracing will be turned on. The debug terminal will display a trace of
all instructions executed until tracing is turned off.

TRACEON Turn debug trace on
Opcode: FE FD

Description: Used with the built-in debugger. If the debugger is not enabled, this instruction is ignored. If the

debugger is enabled, debug tracing will be turned off.

TRACESTR Display debug trace message
Opcode: FE FE nn nn … 00 (where nn and 00 are the bytes of the string)

Description: Used with the built-in debugger. If the debugger is not enabled, this instruction is ignored. If the

debugger is enabled, a message will be displayed on the debug terminal. The zero terminated
ASCII string to be displayed is sent immediately following the opcode.

VERSION Copy the version string to the string buffer
Opcode: FE FF

Description: The uM-FPU version string is copied to the string buffer. And the version code is copied to

register 0. The version code is represented as follows:

MinorD Major

BIT 7 06 5 4 3 2 1

 Bit 7 Debug Flag Set if debug mode is enabled
 Bit 4-6 Major Version
 Bit 0-3 Minor Version

 To read the version string, this instruction is followed by a READSTR instruction.

XOP Extended opcode
Opcode: FE

Description: The first byte of all two byte opcodes is XOP. Many software interface routines are designed to

only handle 8-bit data, so extended opcodes, which are 16-bit opcodes, are sent by sending an
XOP followed by the second half of the opcode. For example, the LOADPI instruction would be
sent as XOP, LOADPI (where XOP is defined as FE, and LOADPI is defined as F3).

Micromega Corporation 25 Revised 2006-08-16

Appendix A
uM-FPU V2 Instruction Summary

Opcode Name Data
Type Opcode Arguments Returns B Reg Description

SELECTA 0x Select A register
SELECTB 1x x Select B register

FWRITEA Float 2x yyyy zzzz Select A register, Write floating point
value to A register

FWRITEB Float 3x yyyy zzzz x Select B register, Write floating point
value to B register

FREAD Float 4x yyyy zzzz Read register
FSET/LSET Either 5x Select B register, A = B
FADD Float 6x x Select B register, A = A + B
FSUB Float 7x x Select B register, A = A - B
FMUL Float 8x x Select B register, A = A * B
FDIV Float 9x x Select B register, A = A / B
LADD Long Ax x Select B register, A = A + B
LSUB Long Bx x Select B register, A = A -B
LMUL Long Cx x Select B register, A = A * B

LDIV Long Dx x Select B register, A = A / B
Remainder stored in register 0

SQRT Float E0 A = sqrt(A)
LOG Float E1 A = ln(A)
LOG10 Float E2 A = log(A)
EXP Float E3 A = e ** A
EXP10 Float E4 A = 10 ** A
SIN Float E5 A = sin(A) radians
COS Float E6 A = cos(A) radians
TAN Float E7 A = tan(A) radians
FLOOR Float E8 A = nearest integer <= A
CEIL Float E9 A = nearest integer >= A
ROUND Float EA A = nearest integer to A
NEGATE Float EB A = -A
ABS Float EC A = |A|
INVERSE Float ED A = 1 / A

DEGREES Float EE Convert radians to degrees
A = A / (PI / 180)

RADIANS Float EF Convert degrees to radians
A = A * (PI / 180)

SYNC F0 5C Synchronization

FLOAT Long F1 0 Copy A to register 0
Convert long to float

FIX Float F2 0 Copy A to register 0
Convert float to long

FCOMPARE Float F3 ss Compare A and B
(floating point)

LOADBYTE Float F4 bb 0 Write signed byte to register 0
Convert to float

LOADUBYTE Float F5 bb 0 Write unsigned byte to register 0
Convert to float

LOADWORD Float F6 wwww 0 Write signed word to register 0
Convert to float

LOADUWORD Float F7 wwww 0 Write unsigned word to register 0
Convert to float

 Appendix A - Instruction Summary

Micromega Corporation 26 uM-FPU Instruction Reference

READSTR F8 aa … 00 Read zero terminated string from
string buffer

ATOF Float F9 aa … 00 0 Convert ASCII to float
Store in register 0

FTOA Float FA ff Convert float to ASCII
Store in string buffer

ATOL Long FB aa … 00 0 Convert ASCII to long
Store in register 0

LTOA Long FC ff Convert long to ASCII
Store in string buffer

FSTATUS Float FD ss Get floating point status of A

XOP FE Extended opcode prefix (extended
opcodes are listed below)

NOP FF No Operation

FUNCTION

FE0n
FE1n
FE2n
FE3n

 0

User defined functions 0-15
User defined functions 16-31
User defined functions 32-47
User defined functions 48-63

IF_FSTATUSA Float FE80 ss Execute user function code if
FSTATUSA conditions match

IF_FSTATUSB Float FE81 ss Execute user function code if
FSTATUSB conditions match

IF_FCOMPARE Float FE82 ss Execute user function code if
FCOMPARE conditions match

IF_LSTATUSA Long FE83 ss Execute user function code if
LSTATUSA conditions match

IF_LSTATUSB Long FE84 ss Execute user function code if
LSTATUSB conditions match

IF_LCOMPARE Long FE85 ss Execute user function code if
LCOMPARE conditions match

IF_LUCOMPARE Long FE86 ss Execute user function code if
LUCOMPARE conditions match

IF_LTST Long FE87 ss Execute user function code if
LTST conditions match

TABLE Either FE88 Table Lookup (user function)

POLY Float FE89 Calculate nth degree polynomial
(user function)

READBYTE Long FE90 bb Get lower 8 bits of register A
READWORD Long FE91 wwww Get lower 16 bits of register A
READLONG Long FE92 yyyy zzzz Get long integer value of register A
READFLOAT Float FE93 yyyy zzzz Get floating point value of register A
LINCA Long FE94 A = A + 1
LINCB Long FE95 B = B + 1
LDECA Long FE96 A = A - 1
LDECB Long FE97 B = B - 1
LAND Long FE98 A = A AND B
LOR Long FE99 A = A OR B
LXOR Long FE9A A = A XOR B
LNOT Long FE9B A = NOT A
LTST Long FE9C ss Get the status of A AND B
LSHIFT Long FE9D A = A shifted by B bit positions
LWRITEA Long FEAx yyyy zzzz Write register and select A
LWRITEB Long FEBx yyyy zzzz x Write register and select B
LREAD Long FECx yyyy zzzz Read register

LUDIV Long FEDx x Select B register, A = A / B (unsigned)
Remainder stored in register 0

POWER Float FEE0 A = A raised to the power of B
ROOT Float FEE1 A = the Bth root of A

 Appendix A - Instruction Summary

Micromega Corporation 27 uM-FPU Instruction Reference

MIN Float FEE2 A = minimum of A and B
MAX Float FEE3 A = maximum of A and B

FRACTION Float FEE4 0 Load Register 0 with the fractional
part of A

ASIN Float FEE5 A = asin(A) radians
ACOS Float FEE6 A = acos(A) radians
ATAN Float FEE7 A = atan(A) radians
ATAN2 Float FEE8 A = atan(A/B)

LCOMPARE Long FEE9 ss Compare A and B
(signed long integer)

LUCOMPARE Long FEEA ss Compare A and B
(unsigned long integer)

LSTATUS Long FEEB ss Get long status of A
LNEGATE Long FEEC A = -A
LABS Long FEED A = |A|
LEFT FEEE Left parenthesis
RIGHT FEEF 0 Right parenthesis
LOADZERO Float FEF0 0 Load Register 0 with Zero
LOADONE Float FEF1 0 Load Register 0 with 1.0
LOADE Float FEF2 0 Load Register 0 with e
LOADPI Float FEF3 0 Load Register 0with pi

LONGBYTE Long FEF4 bb 0 Write signed byte to register 0
Convert to long

LONGUBYTE Long FEF5 bb 0 Write unsigned byte to register 0
Convert to long

LONGWORD Long FEF6 wwww 0 Write signed word to register 0
Convert to long

LONGUWORD Long FEF7 wwww 0 Write unsigned word to register 0
Convert to long

IEEEMODE FEF8 Set IEEE mode (default)
PICMODE FEF9 Set PIC mode
CHECKSUM FEFA 0 Calculate checksum for uM-FPU code
BREAK FEFB Debug breakpoint
TRACEOFF FEFC Turn debug trace off
TRACEON FEFD Turn debug trace on
TRACESTR FEFE aa … 00 Send debug string to trace buffer
VERSION FEFF Copy version string to string buffer

Notes:

Data Type data type required by opcode
Opcode hexadecimal opcode value
Arguments additional data required by opcode
Returns data returned by opcode
B Reg value of B register after opcode executes
x register number (0-15)
n function number (0-63)
yyyy most significant 16 bits of 32-bit value
zzzz least significant 16 bits of 32-bit value
ss status byte
bb 8-bit value
wwww 16-bit value
aa … 00 zero terminated ASCII string

